Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This guide provides a step-by-step guide to 1) convert BAM files (i.e., public) to paired-end FASTQ files; and 2) run the nextflow nf-core/sarek variant calling pipeline.Date created: 19/01/2023; Last update: 25/01/2023

Pre-requisites:

This user guide assumes that you have already installed conda/miniconda3 and nextflow. If you have not done this yet, follow the instructions below:

...

To install several tools, prepare a file called environment.yml (example below). Tip: use a text editor (i.e., vim, nano, or other) to copy and paste the code below into the file.

...

Move to the folder where all the BAM files are present and prepare the following script (i.e.,launch_BAM2FASTQ.pbs):

Code Block
#!/bin/bash -l
#PBS -N BAM2FASTQ
#PBS -l walltime=24:00:00
#PBS -l mem=8gb
#PBS -l ncpus=4

cd $PBS_O_WORKDIR

#activate the conda environment with the necessary tools
conda activate liver

#Sort reads in BAM file by indentifier-name (-n) using 4 CPUs (-@ 4). Note 'prefix' for sorted file noted after $i (input BAM file)
for i in `ls --color=never *.bam`
do
  echo $i
  samtools sort -@ 4 -n $i ${i%%.bam}_sorted
done

#Extract paired end reads in FASTQ format
for file in `ls --color=never *sorted.bam`
do
  echo $file
  bedtools bamtofastq -i $file -fq ${file%%.bam}_R1.fastq -fq2 ${file%%.bam}_R2.fastq
  #compress FASTQ files to run using the sarek pipeline
  gzip -c -9 ${file%%.bam}_R1.fastq > ${file%%.bam}_R1.fastq.gz
  gzip -c -9 ${file%%.bam}_R1.fastq > ${file%%.bam}_R2.fastq.gz
done

...

To run Sarek 3 files are required:

  1. launch.pbs → details on how to run the workflow

  2. ~/.nextflow/config → specify how to run the workflow in the HPC

  3. samplesheet.csv → provides information on the samples and data to be used (i.e., FASTQ, BAM or CRAM)

...

PHASE I - preprocessing

Below is an example of a launch_phase1.pbs file for mapping onto the selected genome:

...

Code Block
singularity {
    cacheDir = '$HOME/NXF_SINGULARITY_CACHEDIR'
    autoMounts = true
}

conda {
    cacheDir = '$HOME/NXF_CONDA_CACHEDIR'
}

singularity {
    enabled = true
    autoMounts = true
}

process {
  executor = 'pbspro'
  beforeScript = {
      """
      source $HOME/.bashrc
      source $HOME/.profile
      """
  }
  scratch = false
  cleanup = false
}

Example of a samplesheet.csv file:

Code Block
patient,sample,lane,fastq_1,fastq_2
healthy_11,1,1,/path/to/data/1.Healthy/Healthy_Combined_11_sorted_R1.fastq.gz,/path/to/data/1.Healthy/Healthy_Combined_11_sorted_R2.fastq.gz

...

Prepare/edit the following launch_phase2.pbs script:

Code Block
#!/bin/bash -l
#PBS -N sarek_II
#PBS -l walltime=48:00:00
#PBS -l select=1:ncpus=1:mem=5gb
cd $PBS_O_WORKDIR
NXF_OPTS='-Xms1g -Xmx4g'
module load java

#run the sarek pipeline
nextflow run nf-core/sarek \
        -r 3.1.1 \
        -profile singularity \
        --genome GATK.GRCh38 \
        --step variant_calling \
        --tools haplotypecaller \
        --wes \
        -resume

...

Prepare/edit the following launch_phase3.pbs script:

Code Block
#!/bin/bash -l
#PBS -N sarek_III
#PBS -l walltime=48:00:00
#PBS -l select=1:ncpus=1:mem=5gb
cd $PBS_O_WORKDIR
NXF_OPTS='-Xms1g -Xmx4g'
module load java

#run the sarek pipeline
nextflow run nf-core/sarek \
        -r 3.1.1 \
        -profile singularity \
        --genome GATK.GRCh38 \
        --step annotate \
        --tools vep,snpeff \
        --wes \
        -resume

...