Prepared by the eResearch Office, QUT.
...
GitHub: https://github.com/nf-core/rnaseq
Pipeline Summary
...
The pipeline is built using Nextflow and processes data using the following steps:
cat - Merge re-sequenced FastQ files
FastQC - Raw read QC
UMI-tools extract - UMI barcode extraction
TrimGalore - Adapter and quality trimming
BBSplit - Removal of genome contaminants
SortMeRNA - Removal of ribosomal RNA (optional)
STAR and Salmon - Fast spliced aware genome alignment and transcriptome quantification
STAR via RSEM - Alignment and quantification of expression levels
HISAT2 - Memory efficient splice aware alignment to a reference
UMI-tools dedup - UMI-based deduplication
picard MarkDuplicates - Duplicate read marking
StringTie - Transcript assembly and quantification
BEDTools and bedGraphToBigWig - Create bigWig coverage files
RSeQC - Various RNA-seq QC metrics
Qualimap - Various RNA-seq QC metrics
dupRadar - Assessment of technical / biological read duplication
Preseq - Estimation of library complexity
featureCounts - Read counting relative to gene biotype
DESeq2 - PCA plot and sample pairwise distance heatmap and dendrogram
MultiQC - Present QC for raw reads, alignment, read counting , and sample similaritysimiliarity
Pseudo-alignment and quantification
Salmon - Wicked fast gene and isoform quantification relative to the transcriptome
Workflow reporting and genomes
Reference genome files - Saving reference genome indices/files
Pipeline information - Report metrics generated during the workflow execution
...
Code Block |
---|
#delete the existing assests associated with the RNAseq pipeline: cd ~/.nextflow/assets/nf-core rm -r rnaseq/ #run again a test with the new version that you are testing, for example, version 3.10.1. See details on how to run a test above (under 'Getting Started') |
Add output folders/files
sample data
Running the pipeline using custom data
...