Exercise 3: Run nf-core/sarek using a liver samples
What is NAFLD?
Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by an accumulation of fat in liver cells (hepatocytes). Excess fat in the liver can lead to significant damage over the years. There are two types of NAFLD:
...
NASH (Non-alcoholic steatohepatitis) – It is a malignant condition and in this fat is accumulated in the liver can cause scarring of liver, liver fibrosis and liver damage further it can cause cirrhosis of liver (also called as end-stage liver disease), further cirrhosis of the liver may lead to liver cancer.
...
The pipeline requires preparing at least 2 files:
...
Location of raw data:
Code Block |
---|
/work/training/sarek/data/WES/liver |
Code Block |
---|
├── liver │ ├── Control1_C1_L001_R1_001.fastq.gz │ ├── Control1_C1_L001_R2_001.fastq.gz │ ├── Control2_C2_L001_R1_001.fastq.gz │ ├── Control2_C2_L001_R2_001.fastq.gz │ ├── Control3_C3_L001_R1_001.fastq.gz │ ├── Control3_C3_L001_R2_001.fastq.gz │ ├── Control4_C4_L001_R1_001.fastq.gz │ ├── Control4_C4_L001_R2_001.fastq.gz │ ├── NAFLD1_P1_L001_R1_001.fastq.gz │ ├── NAFLD1_P1_L001_R2_001.fastq.gz │ ├── NAFLD2_P2_L001_R1_001.fastq.gz │ ├── NAFLD2_P2_L001_R2_001.fastq.gz │ ├── NAFLD3_P3_L001_R1_001.fastq.gz,/full/path/to/ID1_S1_L002_R2 │ ├── NAFLD3_P3_L001_R2_001.fastq.gz │ ├── NAFLD4_P4_L001_R1_001.fastq.gz |
PBS Pro script (launch_nf-core_sarek_trio.pbs) with instructions to run the pipeline
│ ├── NAFLD4_P4_L001_R2_001.fastq.gz
│ └── samplesheet.csv |
STEP1: Create the metadata file (samplesheet.csv):
Change to the data folder directory:
Code Block |
---|
cd $HOME/workshop/sarek/dataruns/triorun3_liver pwd |
Copy the python script “create_samplesheet_nf-core_sarek.py
" to the working folder
Code Block |
---|
cp /work/training/sarek/scripts/create_samplesheet_nf-core_sarek.py $HOME/workshop/sarek/data/trioruns/run3_liver Al |
Note: you could replace ‘$HOME/workshop/sarek/runs/data’ liver’ with “.” A dot indicates ‘current directory’ and will copy the file to the directory where you are currently located
Check help option on how to run the script:
...
Code Block |
---|
python create_samplesheet_nf-core_sarek.py --dir $HOME/workshop/sarek/data/trioliver \ --read1_extension R1.fastq.gz \ --read2_extension R2.fastq.gz \ --out samplesheet.csv |
...
Code Block |
---|
ls -l cat samplesheet.cvs |
patient,sample,lane,fastq_1,fastq_2 SRR14724455,NA12892a,L001,/sarek/data/WES/trio/SRR14724455_NA12892a_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724455_NA12892a_L001_R2.fastq.gz SRR14724456,NA12891a,L001,/sarek/data/WES/trio/SRR14724456_NA12891a_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724456_NA12891a_L001_R2.fastq.gz SRR14724463,NA12878a,L001,/sarek/data/WES/trio/SRR14724463_NA12878a_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724463_NA12878a_L001_R2.fastq.gz SRR14724474,NA12892b,L001,/sarek/data/WES/trio/SRR14724474_NA12892b_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724474_NA12892b_L001_R2.fastq.gz SRR14724475,NA12891b,L001,/sarek/data/WES/trio/SRR14724475_NA12891b_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724475_NA12891b_L001_R2.fastq.gz SRR14724483,NA12878b,L001,/sarek/data/WES/trio/SRR14724483_NA12878b_L001_R1.fastq.gz,/sarek/data/WES/trio/SRR14724483_NA12878b_L001_R2.fastq.gz |
---|
Copy the PBS Pro script for running STEP2 - Run the nf-core/sarek pipeline (launch_nf-core_sarek_trio.pbs)
Copy and paste the code below to the terminal:
Code Block |
---|
cp $HOME/workshop/sarek/data/WES/trio/samplesheet.csv $HOME/workshop/sarek/runs/run2_sarek_trio cp $HOME/workshop/sarek/scripts/launch_nf-core_sarek_trioliver.pbs $HOME/workshop/sarek/runs/run2run3_trioliver cd $HOME/workshop/sarek/runs/run2run3_trioliver |
Line 1: Copy the samplesheet.csv file generated above to the working directory
Line 2: copy the launch_nf-core_sarek_trio.pbs submission script to the working directory
Line 3: move to the working directory
View the content of the launch_nf-core_RNAseq_QC.pbs
script:
Code Block |
---|
cat launch_nf-core_RNAseqsarek_QCliver.pbs |
#!/bin/bash -l #PBS -N nfsarek_ |
---|
liver #PBS -l walltime=48:00:00 #PBS -l select=1:ncpus=1:mem=5gb
cd $PBS_O_WORKDIR NXF_OPTS='-Xms1g -Xmx4g' module load java
#specify the nextflow version to use to run the workflow export NXF_VER=23.10.1
#run the sarek pipeline nextflow run nf-core/sarek \ -r 3.3.2 \ -profile singularity \ --genome GATK.GRCh38 \ --input samplesheet.csv \ --wes \ --outdir ./results \ --step mapping \ --tools haplotypecaller,snpeff,vep \ --snpeff_cache /work/training/sarek/NXF_SINGULARITY_CACHEDIR/snpeff_cache \ --vep_cache /work/training/sarek/NXF_SINGULARITY_CACHEDIR/vep_cache \ -resume |
---|
The above script will screen for germline (inherited) mutations using GATK’s haplotypecaller and then annotate the identified variants using snpeff and VEP.
Version 3.3.2 allows running the pipeline to do quality assessment only, without any alignment, read counting, or trimming.
The pipeline enables use to start at distinct stages, we are commencing from the start “--step mapping”
Submitting the job
Once you have created the folder for the run, the samplesheet.csv file, and launch.pbs, you are ready to submit the job to the HPC scheduler:
...
Once the pipeline has finished running - Assess the results as follows:
NOTE: To proceed, you need to be on QUT’s WiFi network or signed via VPN.
To browse the working folder in the HPC type in the file finder:
...