Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Aim:

  • Assess the quality of raw datasets

  • Define quality trimming parameters prior RNAseq gene profiling

...

Code Block
mkdir -p $HOME/workshop/2024/rnaseq/scripts
cp /work/training/2024/rnaseq/scripts/* $HOME/workshop/2024/rnaseq/scripts/
ls -l $HOME/workshop/2024/rnaseq/scripts/
  • Line 1: The -p indicates create 'parental directories as required. Thus the line 1 command creates both /workshop/ and the subfolder /workshop/scripts/

  • Line 2: Copies all files from /work/datasets/workshop/scripts/ as noted by an asterisk to the newly created folder $HOME/workshop/scripts/

Copy public data to your $HOME

Code Block
mkdir -p $HOME/workshop/2024/rnaseq/data
cp /work/training/2024/rnaseq/data/* $HOME/workshop/2024/rnaseq/data/
# list the content of the $HOME/workshop/2024/rnaseq/data/ 
  • Line 1: The first command creates the folder /scripts/

  • Line 2: Copies all files from /work/datasets/workshop/scripts/ folder as noted by an asterisk to newly created $HOME/workshop/scripts/ folder

  • Line 3: a quick challenge - see the previous section for hints

Create a folder for running the nf-RNA-seq pipeline

...

Code Block
mkdir -p $HOME/workshop/2024/rnaseq/runs
mkdir $HOME/workshop/2024/rnaseq/runs/run1_test
mkdir $HOME/workshop/2024/rnaseq/runs/run2_QC
mkdir $HOME/workshop/2024/rnaseq/runs/run3_RNAseq
cd $HOME/workshop/2024/rnaseq/runs
  • Lines 1-4: create sub-folders for each exercise

  • Line 5: change the directory to the folder “run1_test”

  • Line 6: print the current working directory

Exercise 1: Run RNA-seq QC check

The pipeline requires preparing at least 2 files:

  • Metadata file (samplesheet.csv) thatspecifies the name of the samples, location of FASTQ files ('Read 1' and ‘Read 2’), and strandedness (forward, reverse, or auto. Note: auto is used when the strandedness of the data is unknown)

  • PBS Pro script (launch_nf-core_RNAseq_QC.pbs) with instructions to run the pipeline

Create the metadata file (samplesheet.csv):

Change to the data folder directory:

...

Code Block
cp /work/training/2024/rnaseq/scripts/create_samplesheet_nf-core_RNAseq.sh $HOME/workshop/2024/rnaseq/data/
  • Note: you could replace ‘$HOME/workshop/data’ with “.” A dot indicates ‘current directory’ and will copy the file to the directory where you are currently located

View the content of the script:

Code Block
cat create_samplesheet_nf-core_RNAseq.sh

Example for Single-End data (only ‘Read 1’ is available):

#!/bin/bash -l

#User defined variables

##########################################################

DIR='$HOME/workshop/data/'

INDEX='samplesheet.csv'

##########################################################

 

#load python module

module load python/3.10.8-gcccore-12.2.0

 

#fetch the script to create the sample metadata table

wget -L https://raw.githubusercontent.com/nf-core/rnaseq/master/bin/fastq_dir_to_samplesheet.py

chmod +x fastq_dir_to_samplesheet.py

 

#generate initial sample metadata file

./fastq_dir_to_samplesheet.py $DIR $INDEX \

        --strandedness auto \

        --read1_extension .fastq.gz

...

Copy the PBS Pro script for QC (launch_nf-core_RNAseq_QC.pbs)

Copy and paste the code below to the terminal:

Code Block
cp $HOME/workshop/2024/rnaseq/data/samplesheet.csv $HOME/workshop/2024/rnaseq/runs/run2_QC
cp $HOME/workshop/scripts/launch_nf-core_RNAseq_QC.pbs $HOME/workshop/2024/rnaseq/runs/run2_QC
cd $HOME/workshop/2024/rnaseq/runs/run2_QC
  • Line 1: Copy the samplesheet.csv file to the working directory

  • Line 2: move to the working directory

  • Line 3: copy the launch_nf-core_RNAseq_QC.pbs submission script to the working directory

View the content of the launch_nf-core_RNAseq_QC.pbs script:

...

#!/bin/bash -l

#PBS -N nfrnaseq_QC

#PBS -l select=1:ncpus=2:mem=4gb

#PBS -l walltime=24:00:00

 

#work on current directory

cd $PBS_O_WORKDIR

 

#load java and set up memory settings to run nextflow

module load java

export NXF_OPTS='-Xms1g -Xmx4g'

 

nextflow run nf-core/rnaseq \

      -profile singularity \

      -r 3.14.0 \

      --input samplesheet.csv \

      --outdir results \

      --genome GRCm38-local \

      --skip_trimming \

      --skip_alignment \

      --skip_pseudo_alignment

  • We recommend running the nextflow nf-core/rnaseq pipeline once and then assessing the fastqc results folder to assess if sequence biases are present in the 5'-end and 3'-end ends of the sequences.

  • Version 3.12.0 allows running the pipeline to do quality assessment only, without any alignment, read counting, or trimming.

Submitting the job

Once you have created the folder for the run, the samplesheet.csv file, and launch.pbs, you are ready to submit the job to the HPC scheduler:

Code Block
qsub launch_nf-core_RNAseq_QC.pbs

Monitoring the Run

Code Block
qjobs

to check on the jobs, you are running. Nextflow will launch additional jobs during the run.

You can also check the .nextflow.log file for details on what is going on.

Once the pipeline has finished running - Assess the QC report:

NOTE: To proceed, you need to be on QUT’s WiFi network or signed via VPN.

To browse the working folder in the HPC type in the file finder:

...

  • Assess QC reports (FastQC and MultiQC) to define how many nucleotides should be trimmed from the 5'-end and/or 3-end regions of the FASTQ reads (see Case 3 below).