Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Table of Contents

...

You should see several output directories and files have been created in your ‘ampliseq_test’ directory. These contain the test analysis results. Have a look through these, as they are similar to the output from a full ampliseq run (i.e. on your dataset).

Need instructions on setting up NextFlow tower

Q for Craig:

Do we need to add any of this to .nextflow/config file? Perhaps just for Tower?

process {
executor = 'pbspro'
scratch = 'true'
beforeScript = {
"""
mkdir -p /data1/whatmorp/singularity/mnt/session
source $HOME/.bashrc
source $HOME/.profile
"""
}
}

...

Code Block
nextflow run nf-core/ampliseq -profile singularity --manifest manifest.txt

Block: takes a very long time and often fails during classifier step.

Solution: run classifier manually with QIIME and point to output file in nextflow.config

https://docs.qiime2.org/2020.11/tutorials/feature-classifier/

This is the NexFlow script for the job:

Code Block
export HOME="${PWD}/HOME"

		unzip -qq Silva_132_release.zip

		fasta="SILVA_132_QIIME_release/rep_set/rep_set_16S_only/99/silva_132_99_16S.fna"
		taxonomy="SILVA_132_QIIME_release/taxonomy/16S_only/99/consensus_taxonomy_7_levels.txt"

		if [ "false" = "true" ]; then
			sed 's/#//g' $taxonomy >taxonomy-99_removeHash.txt
			taxonomy="taxonomy-99_removeHash.txt"
			echo "
######## WARNING! The taxonomy file was altered by removing all hash signs!"
		fi

		### Import
		qiime tools import --type 'FeatureData[Sequence]' 			--input-path $fasta 			--output-path ref-seq-99.qza
		qiime tools import --type 'FeatureData[Taxonomy]' 			--input-format HeaderlessTSVTaxonomyFormat 			--input-path $taxonomy 			--output-path ref-taxonomy-99.qza

		#Extract sequences based on primers
		qiime feature-classifier extract-reads 			--i-sequences ref-seq-99.qza 			--p-f-primer TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 			--p-r-primer GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 			--o-reads TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-99-ref-seq.qza 			--quiet

		#Train classifier
		qiime feature-classifier fit-classifier-naive-bayes 			--i-reference-reads TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-99-ref-seq.qza 			--i-reference-taxonomy ref-taxonomy-99.qza 			--o-classifier TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-99-classifier.qza 			--quiet

The input fast and taxonomy files the above script are pointing to are in the reference database file, Silva_132_release.zip

So to generate the classifier file manually:

Code Block
# Install QIIME2 using conda (only need to do this once per user)
# https://docs.qiime2.org/2019.10/install/native/

wget https://data.qiime2.org/distro/core/qiime2-2019.10-py36-linux-conda.yml
conda env create -n qiime2-2019.10 --file qiime2-2019.10-py36-linux-conda.yml
conda activate qiime2-2019.10

# You can test the QIIME2 installation by running: qiime --help

# Make sure you are in an interactive PBS session with sufficient RAM (lots of RAM needed)

qsub -I -S /bin/bash -l walltime=72:00:00 -l select=1:ncpus=16:mem=256gb

# Unzip Silva_132_release.zip to access the required databases

unzip Silva_132_release.zip 



Running analysis on QUTs HPC

...

If you haven’t been set up or have used the HPC previously, click on this link for information on how to get access to and use the HPC:

Need a link here for HPC access and usage 

Creating a shared workspace on the HPC

...

To request a node using PBS, submit a shell script containing your RAM/CPU/analysis time requirements and the code needed to run your analysis. For an overview of submitting a PBS job, see here:

Need a link here for creating PBS jobs

Alternatively, you can start up an ‘interactive’ node, using the following:

...