Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 20 Next »

Overview

  • Create a metadata “samplesheet.csv” for small RNAseq datasets.

  • Learn to use a “nextflow.config” file in the working directory to override Nextflow parameters (e.g., specify where to find the pipeline assets).

  • Learn how to prepare a PBS script to run the expression profiling of small RNAs against the reference miRBase database annotated microRNAs.

Preparing the pipeline inputs

The pipeline requires preparing at least 2 files:

  • Metadata file (samplesheet.csv) that specifies the name of the samples, location of FASTQ files ('Read 1' and ‘Read 2’), and strandedness (forward, reverse, or auto. Note: auto is used when the strandedness of the data is unknown)

  • PBS Pro script (launch_nf-core_RNAseq_QC.pbs) with instructions to run the pipeline

  • Nextflow.config - revision 2.3.1 of the nf-core/smrnaseq pipeline may not be able to identify the location of reference adapter sequences, thus, we will use a local nextflow.config file to tell Nextflow where to find the reference adapters necessary to trim the raw small_RNA-Seq data

A. Create the metadata file (samplesheet.csv):

Change to the data folder directory:

cd $HOME/workshop/2024-2/session6_smallRNAseq/data/human_disease

Copy the bash script to the working folder

cp /work/training/2024/smallRNAseq/scripts/create_nf-core_smallRNAseq_samplesheet.sh $HOME/workshop/2024-2/session6_smallRNAseq/data/human_disease
  • Note: you could replace ‘$HOME/workshop/data’ with “.” A dot indicates ‘current directory’ and will copy the file to the directory where you are currently located

View the content of the script:

cat create_nf-core_smallRNAseq_samplesheet.sh
image-20241025-063324.png

NOTE: modify ‘read1_extension’ as appropriate for your data. For example: _1.fastq.gz or _R1_001.fastq.gz or _R1.fq.gz , etc

Let’s generate the metadata file by running the following command:

sh create_nf-core_smallRNAseq_samplesheet.sh $HOME/workshop/2024-2/session6_smallRNAseq/data/human_disease

Check the newly created samplesheet.csv file:

cat samplesheet.csv

sample,fastq_1

ERR409878,/work/training/2024/smallRNAseq/data/human_disease/ERR409878.fastq.gz

ERR409879,/work/training/2024/smallRNAseq/data/human_disease/ERR409879.fastq.gz

ERR409880,/work/training/2024/smallRNAseq/data/human_disease/ERR409880.fastq.gz

ERR409881,/work/training/2024/smallRNAseq/data/human_disease/ERR409881.fastq.gz

ERR409882,/work/training/2024/smallRNAseq/data/human_disease/ERR409882.fastq.gz

ERR409883,/work/training/2024/smallRNAseq/data/human_disease/ERR409883.fastq.gz

ERR409884,/work/training/2024/smallRNAseq/data/human_disease/ERR409884.fastq.gz

ERR409885,/work/training/2024/smallRNAseq/data/human_disease/ERR409885.fastq.gz

ERR409886,/work/training/2024/smallRNAseq/data/human_disease/ERR409886.fastq.gz

ERR409887,/work/training/2024/smallRNAseq/data/human_disease/ERR409887.fastq.gz

ERR409888,/work/training/2024/smallRNAseq/data/human_disease/ERR409888.fastq.gz

ERR409889,/work/training/2024/smallRNAseq/data/human_disease/ERR409889.fastq.gz

ERR409890,/work/training/2024/smallRNAseq/data/human_disease/ERR409890.fastq.gz

ERR409891,/work/training/2024/smallRNAseq/data/human_disease/ERR409891.fastq.gz

ERR409892,/work/training/2024/smallRNAseq/data/human_disease/ERR409892.fastq.gz

ERR409893,/work/training/2024/smallRNAseq/data/human_disease/ERR409893.fastq.gz

ERR409894,/work/training/2024/smallRNAseq/data/human_disease/ERR409894.fastq.gz

ERR409895,/work/training/2024/smallRNAseq/data/human_disease/ERR409895.fastq.gz

ERR409896,/work/training/2024/smallRNAseq/data/human_disease/ERR409896.fastq.gz

ERR409897,/work/training/2024/smallRNAseq/data/human_disease/ERR409897.fastq.gz

ERR409898,/work/training/2024/smallRNAseq/data/human_disease/ERR409898.fastq.gz

ERR409899,/work/training/2024/smallRNAseq/data/human_disease/ERR409899.fastq.gz

ERR409900,/work/training/2024/smallRNAseq/data/human_disease/ERR409900.fastq.gz

B. Prepare PBS Pro script to run the nf-core/smrnaseq pipeline

Copy the PBS Pro script for running the full small RNAseq pipeline (launch_nf-core_smallRNAseq_miRBase.pbs)

Copy and paste the code below to the terminal:

cp $HOME/workshop/2024-2/session6_smallRNAseq/data/human_disease/samplesheet.csv $HOME/workshop/2024-2/session6_smallRNAseq/runs/run1_human_miRBase
cp /work/training/2024/smallRNAseq/scripts/launch_nf-core_smallRNAseq_miRBase.pbs $HOME/workshop/2024-2/session6_smallRNAseq/runs/run1_human_miRBase
cp /work/training/2024/smallRNAseq/scripts/nextflow.config $HOME/workshop/2024-2/session6_smallRNAseq/runs/run1_human_miRBase
cd $HOME/workshop/2024-2/session6_smallRNAseq/runs/run1_human_miRBase
  • Line 1: Copy the samplesheet.csv file to the working directory

  • Line 2: Copy the launch_nf-core_smallRNAseq_human.pbs submission script to the working directory

  • Line 3: Copy the nextflow.config file from shared folder to my working directory.

  • Line 4: move to the working directory

View the content of the launch_nf-core_RNAseq_QC.pbs script:

cat launch_nf-core_smallRNAseq_miRBase.pbs 
image-20241027-031626.png

TIP: when running the nf-core/smrnaseq pipeline (release 2.3.1) the pipeline is not able to find the location of the reference adapter sequences for trimming of the raw small RNAseq pipeline, so we need to specify where to find the folder where the adapter sequences file is located. To do this, we prepare a “nextflow.config” file (see below). This file should be already in your working directory. Print the content as follows:

cat nextflow.config
singularity {
    runOptions = '-B $HOME/.nextflow/assets/nf-core/smrnaseq/assets'
}

Note: if a config file is placed in the working folder it can override parameters define by the global ~/.nextflow/config file or the config file define as part of the pipeline.

Submit the job to the HPC cluster:

qsub launch_nf-core_smallRNAseq_miRBase.pbs

Monitor the progress:

qjobs

The job will take several hours to run, hence we will use precomputed results for the statistical analysis in the next section.

Outputs

The pipeline will produce two folders, one called “work,” where all the processing is done, and another called “results,” where we can find the pipeline's outputs. The content of the results folder is as follows:

results/
├── bowtie_index
│   ├── mirna_hairpin
│   └── mirna_mature
├── fastp
│   └── on_raw
├── fastqc
│   ├── raw
│   └── trimmed
├── mirna_quant
│   ├── bam
│   ├── edger_qc    <----- Expression mature miRNA (mature_counts.csv) and precursor-miRNAs (haripin_counts.csv) counts can be found in this subfolder. 
│   ├── mirtop
│   ├── reference
│   └── seqcluster
├── mirtrace
│   ├── mirtrace-report.html
│   ├── mirtrace-results.json
│   ├── mirtrace-stats-contamination_basic.tsv
│   ├── mirtrace-stats-contamination_detailed.tsv
│   ├── mirtrace-stats-length.tsv
│   ├── mirtrace-stats-mirna-complexity.tsv
│   ├── mirtrace-stats-phred.tsv
│   ├── mirtrace-stats-qcstatus.tsv
│   ├── mirtrace-stats-rnatype.tsv
│   ├── qc_passed_reads.all.collapsed
│   └── qc_passed_reads.rnatype_unknown.collapsed
├── multiqc
│   ├── multiqc_data
│   ├── multiqc_plots
│   └── multiqc_report.html
└── pipeline_info
    ├── execution_report_2024-08-20_16-55-53.html
    ├── execution_timeline_2024-08-20_16-55-53.html
    ├── execution_trace_2024-08-20_16-55-53.txt
    ├── nf_core_smrnaseq_software_mqc_versions.yml
    ├── params_2024-08-20_16-56-04.json
    └── pipeline_dag_2024-08-20_16-55-53.html

The quantification of the mature miRNA and hairpin expressions can be found in the /results/mirna_quant/edger_qc directory.

cd /results/mirna_quant/edger_qc
hairpin_counts.csv
hairpin_CPM_heatmap.pdf
hairpin_edgeR_MDS_distance_matrix.txt
hairpin_edgeR_MDS_plot_coordinates.txt
hairpin_edgeR_MDS_plot.pdf
hairpin_log2CPM_sample_distances_dendrogram.pdf
hairpin_log2CPM_sample_distances_heatmap.pdf
hairpin_log2CPM_sample_distances.txt
hairpin_logtpm.csv
hairpin_logtpm.txt
hairpin_normalized_CPM.txt
hairpin_unmapped_read_counts.txt
mature_counts.csv      <----- Expression mature miRNA. This file will be used to identify differentially expressed miRNAs (Session 7)
mature_CPM_heatmap.pdf
mature_edgeR_MDS_distance_matrix.txt
mature_edgeR_MDS_plot_coordinates.txt
mature_edgeR_MDS_plot.pdf
mature_log2CPM_sample_distances_dendrogram.pdf
mature_log2CPM_sample_distances_heatmap.pdf
mature_log2CPM_sample_distances.txt
mature_logtpm.csv
mature_logtpm.txt
mature_normalized_CPM.txt
mature_unmapped_read_counts.txt

Let’s inspect the mature.csv file. Let’s use the ‘cat’ command to print it on the screen:

cat mature_counts.csv
"","hsa-let-7a-5p","hsa-let-7a-3p","hsa-let-7a-2-3p","hsa-let-7b-5p","hsa-let-7b-3p","hsa-let-7c-5p","hsa-let-7c-3p","hsa-let-7d-5p","hsa-let-7d-3p","hsa-
"ERR409882",364608,341,16,59417,1998,68342,44,14861,3790,29486,207,211184,228,1462,7002,2,49664,1,1091,174,326,43,6,468,7,1482,1615,9,17256,534,573,6526,0
"ERR409879",305651,184,6,52115,1476,58425,30,12397,2659,23604,201,198778,151,1013,5486,1,48381,4,945,202,194,40,7,368,3,1097,1317,6,12662,561,372,3693,2,1
"ERR409881",712880,165,9,83857,2335,162724,83,30556,4503,68044,385,456864,348,1818,9893,0,111712,5,1495,259,174,48,6,318,2,1466,2220,4,17865,466,551,10360
"ERR409884",182178,111,3,27892,913,39989,21,7751,1886,13902,159,127386,132,743,3651,3,40311,0,629,117,97,21,11,305,2,1147,902,2,8313,368,242,2276,0,1146,4
"ERR409889",568269,257,13,92339,2239,100021,45,20819,3511,44172,207,276474,259,1376,12407,5,83908,5,1971,467,403,70,30,1082,7,3082,3172,14,24112,819,421,6
"ERR409894",314053,137,9,44708,1220,74145,74,12313,2827,25295,196,196866,158,896,4681,3,43677,1,806,138,131,22,7,296,3,1181,1169,5,11145,611,360,3742,5,12
"ERR409887",178201,48,4,25678,733,41506,27,7833,1613,15724,121,123391,98,497,3288,0,39434,1,445,97,65,15,3,150,2,539,461,3,5837,186,161,2958,2,847,3,1544,
"ERR409880",318121,136,3,46347,1260,65606,39,11095,2269,24585,200,191072,194,1118,5599,2,67420,3,1242,155,168,22,2,505,6,1708,1836,3,11293,482,359,3652,1,
"ERR409890",332579,105,7,40131,955,73537,38,13528,2029,31807,158,207846,175,962,5146,0,42402,0,659,149,102,20,4,219,3,964,1086,4,11957,423,385,6017,4,1556

Note: the “mature_counts.csv” needs to be transposed prior running the statistical analysis. This can be done either user the R script or using a script called “transpose_csv.py”.

Let’s copy the transpose_csv.py script to the working folder:

cp /work/training/2024/smallRNAseq/scripts/transpose_csv.py .

The check how to use the script do the following:

python transpose_csv.py --help
usage: transpose_csv.py [-h] --input INPUT --output OUTPUT

Transpose a CSV file and generate a tab-delimited TXT file.

optional arguments:
  -h, --help       show this help message and exit
  --input INPUT    Input CSV file containing mature miRNA counts.
  --output OUTPUT  Output tab-delimited TXT file.

To transpose the initial “mature_counst.csv” file do the following:

python transpose_csv.py --input mature_counts.csv --out mature_counts.txt

Let’s now print the transposed mature counts table:

cat mature_counts.txt
 
  • No labels