Prior running the nf-core/sarek pipeline with real data, we will first run a test with sample data to make sure the pipeline runs properly.
Work in the HPC |
---|
Before we start using the HPC, let’s start an interactive session:
qsub -I -S /bin/bash -l walltime=10:00:00 -l select=1:ncpus=1:mem=4gb
Get a copy of the scripts to be used in this module
Use the terminal to log into the HPC and create a /RNAseq/ folder to run the nf-core/rnaseq pipeline. For example:
mkdir -p $HOME/workshop/sarek/scripts cp /work/training/sarek/scripts/* $HOME/workshop/sarek/scripts/ ls -l $HOME/workshop/sarek/scripts/
Line 1: The -p indicates create 'parental directories as required. Thus the line 1 command creates both /workshop/ and the subfolder /workshop/scripts/
Line 2: Copies all files from /work/datasets/workshop/scripts/ as noted by an asterisk to the newly created folder $HOME/workshop/scripts/
Copy public data to your $HOME
mkdir -p $HOME/workshop/sarek/data/WES/trio mkdir -p $HOME/workshop/sarek/data/WES/liver cp /work/training/sarek/data/WES/trio/* $HOME/workshop/sarek/data/WES/trio cp /work/training/sarek/data/WES/liver/* $HOME/workshop/sarek/data/WES/liver
Lines 1 -2: Command creates the folders to copy data
Line 3: Copies all files from /work/datasets/workshop/sarek/data/WES/trio folder as noted by an asterisk to newly created $HOME/workshop/sarek/data/WES/trio folder.
Line 4: Copies all files from /work/datasets/workshop/sarek/data/WES/liver folder as noted by an asterisk to newly created $HOME/workshop/sarek/data/WES/liver folder.
Create folders for running the nf-core/sarek pipeline
Let’s create an “RNAseq” folder to run the nf-core/rnaseq pipeline and move into it. For example:
mkdir -p $HOME/workshop/sarek mkdir $HOME/workshop/sarek/run1_test mkdir $HOME/workshop/sarek/run2_trio mkdir $HOME/workshop/sarek/run3_liver cd $HOME/workshop/
Lines 1-4: create sub-folders for each exercise
Line 5: change the directory to the folder “run1_test”
Line 6: print the current working directory
Exercise 1: Running a test with nf-core sample data
First, let’s assess the execution of the nf-core/rnaseq pipeline by running a test using sample data.
Copy the launch_nf-core_RNAseq_test.pbs
to the working directory
cd $HOME/workshop/sarek/run1_test cp $HOME/workshop/sarek/scripts/launch_nf-core_sarek_test.pbs .
View the content of the script as follows:
cat launch_nf-core_sarek_test.pbs
#!/bin/bash -l #PBS -N nfsarek_run1_test #PBS -l walltime=48:00:00 #PBS -l select=1:ncpus=1:mem=5gb cd $PBS_O_WORKDIR NXF_OPTS='-Xms1g -Xmx4g' module load java #specify the nextflow version to use to run the workflow export NXF_VER=23.10.1 #run the sarek pipeline nextflow run nf-core/sarek \ -r 3.3.2 \ -profile test,singularity \ --outdir ./results |
---|
nextflow command: nextflow run
pipeline name: nf-core/sarek
pipeline version: -r 3.3.2
container type and sample data: -profile test,singularity
output directory: --outdir results
Submitting the job
Submit the test job to the HPC cluster as follows:
qsub launch_nf-core_sarek_test.pbs
Monitoring the Run
qjobs
Outputs:
The test run should take about ~14 min to complete. Find run outputs in the “results” folder:
results/ ├── csv │ ├── markduplicates.csv │ ├── markduplicates_no_table.csv │ ├── recalibrated.csv │ └── variantcalled.csv ├── multiqc │ ├── multiqc_data │ ├── multiqc_plots │ └── multiqc_report.html ├── pipeline_info │ ├── execution_report_2024-05-08_15-28-38.html │ ├── execution_timeline_2024-05-08_15-28-38.html │ ├── execution_trace_2024-05-08_15-28-38.txt │ ├── params_2024-05-08_15-41-30.json │ ├── pipeline_dag_2024-05-08_15-28-38.html │ └── software_versions.yml ├── preprocessing │ ├── markduplicates │ ├── recalibrated │ └── recal_table ├── reports │ ├── bcftools │ ├── fastqc │ ├── markduplicates │ ├── mosdepth │ ├── samtools │ └── vcftools ├── tabix │ ├── genome.bed.gz │ └── genome.bed.gz.tbi └── variant_calling └── strelka
Once the pipeline has finished running - Assess the QC report:
NOTE: To proceed, you need to be on QUT’s WiFi network or signed via VPN.
To browse the working folder in the HPC type in the file finder:
Windows PC
\\hpc-fs\work\training\rnaseq
Mac
smb://hpc-fs/work/training/rnaseq
Evaluate the nucleotide distributions in the 5'-end and 3'-end of the sequenced reads (Read1 and Read2). Look into the “MultiQC” folder and open the provided HTML report.
Items to check:
The overall quality of the experiment and reads. Look at the “Sequence Quality Histogram” plot. For example, if Phred assigns a quality score of 30 to a base, the chances that this base is called incorrectly are 1 in 1000. Phred quality scores are logarithmically linked to error probabilities.
Phred Quality Score | Probability of incorrect base call | Base call accuracy |
---|---|---|
10 | 1 in 10 | 90% |
20 | 1 in 100 | 99% |
30 | 1 in 1000 | 99.9% |
40 | 1 in 10,000 | 99.99% |
50 | 1 in 100,000 | 99.999% |
60 | 1 in 1,000,000 | 99.9999% |